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ABSTRACT

This paper outlines an approach for estimating latent heating, surface rainfall rate, and liquid water path in

warm rain from downward-viewingW-band radar observations using a BayesianMonte Carlo algorithm. The

algorithm utilizes observed vertical and path-integrated characteristics of precipitating liquid clouds to

identify the most appropriate hydrometeor and latent heating structures in a large database of profiles

generated using a cloud-resolving model. These characteristics are selected by applyingmultiple performance

metrics to synthetic retrievals. Analysis of the retrievals suggests that a combination of cloud-top, rain-top,

and maximum reflectivity heights; vertically integrated reflectivity and attenuation; and a measure of near-

surface intensity is sufficient to constrain bulk properties and the vertical structure of warm rain systems.

When applied to observations atCloudSat resolution, biases in retrieved liquid water path and surface rainfall

rate are small (less than 10%). The algorithm also captures the vertical structure of latent heating, although

the magnitudes of integrated heating and cooling exhibit nearly compensating low biases. Random errors are

larger owing to the limitations of single-frequency radar observations in constraining drop size distributions.

Uncertainties in the altitudes of peak heating and cooling at the pixel scale are typically less than one vertical

level, while uncertainties in vertically resolved estimates of heating and cooling rates are on the order of a

factor of 2. The utility of the technique is illustrated through application to case studies from airborne radar

data from the VAMOS Ocean–Cloud–Atmosphere–Land Study field campaign and satellite observations

from CloudSat.

1. Introduction

The release of latent heat provides a mechanism for

transferring energy from the surface to the upper at-

mosphere. Latent heating due to phase changes of water

in cloud and precipitation formation and dissipation

processes helps drive the atmospheric general circulation,

and an accurate accounting of its three-dimensional dis-

tribution is necessary to correctly model the climate sys-

tem (Simpson et al. 1988). Aubert (1957) determined

that latent heat release affects vertical motion in the

surrounding environment, with the height of maxi-

mum release corresponding to the level of maximum

velocity perturbation. Near the same time, Riehl and

Malkus (1958) found that tropical convection pro-

vides the necessary means of transferring energy

from the lower atmosphere to the upper troposphere,

which feeds the ascending branch of the Hadley cir-

culation. This notion was based on the premise of

‘‘hot towers,’’ a term coined in the paper for what are

considered today as convection turrets in the trimo-

dal distribution of convection within tropical regions

(Johnson et al. 1999).

While it is possible to infer net latent heat release in a

domain from total precipitation accumulations, the im-

pact of this heating depends on its vertical placement in

the atmosphere. Using a linearized model, Hartmann
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et al. (1984), for example, found that atmospheric

circulations are sensitive to the vertical distribution of

latent heating associated with widespread convection

occurring in tropical regions. Full realistic vertical

velocity and heating profiles in tropical regions were

required to successfully recreate a circulation similar

to that of the real atmosphere. Furthermore, the ver-

tical distribution of latent heating differs substantially

between regimes of deep convection and associated

stratiform precipitation (Houze 1982). Convective re-

gimes contain more total heating throughout the tro-

pospheric extent of the cloud, while stratiform clouds

usually contain a higher magnitude of evaporative cool-

ing (McCumber et al. 1991; Mapes and Houze 1993; Tao

et al. 1993). It has also been theorized that latent

heating by condensation within the lower levels of the

atmosphere from shallow convection plays an impor-

tant role during the incipient stages of the Madden–

Julian oscillation (MJO) (Jiang et al. 2011). Similarly,

Sheffield et al. (2015) demonstrated that variations in

the latent heat released by warm-phase processes

impacted the transitions from shallow cumulus clouds

to deep convection. Thus, a proper representation of

warm rain, defined as that which forms exclusively

from droplet collision and coalescence processes be-

low the freezing level, and the latent heat released by

it may be essential to correctly model the progression

of the MJO and other climatic features (Jiang et al.

2011; Schumacher et al. 2004).

A number ofmethods have been explored for deriving

latent heating estimates from both ground-based and

satellite measurements, but observations of shallow

precipitation are often underrepresented in conventional

precipitation and latent heating datasets (Haynes and

Stephens 2007; Ellis et al. 2009; Berg et al. 2010; Hagos

et al. 2010; Jiang et al. 2009; Zhang et al. 2010; Lebsock

and L’Ecuyer 2011). Efforts to quantitatively estimate

latent heating from observations mostly stem from Reed

and Recker (1971) andYanai et al. (1973), who used heat

and moisture budgets to calculate domain fluxes of dia-

batic heating from a modeling perspective and a distrib-

uted radiosonde network, respectively. Numerous studies

have since applied similar methods to quantify diabatic

heating in the atmosphere, usually in a targeted field

campaign employing a variety of observation platforms.

For example, the Tropical Ocean Global Atmosphere

Coupled Ocean–Atmosphere Response Experiment

provided datasets to calculate diabatic heating fluxes

from a combination of radiosondes, radar, and other

instruments (Johnson and Ciesielski 2000). Thompson

et al. (1979) utilized diabatic heating estimates gen-

erated from a network of ship observations to study

the growth of wave disturbances in the intertropical

convergence zone during the GARP Atlantic Tropical

Experiment. Schumacher et al. (2007, 2008) analyzed

the idealized heating profiles of differing cloud types

observed during multiple field campaigns using both

radiosonde and radar observations. Latent heating es-

timates from airborne Doppler radar also have pro-

vided insights into the growth of a hurricane (Guimond

et al. 2011; Guimond and Reisner 2012).

Calculations of regional heat budgets are prone to

error due to 1) the required use of multiple instruments

with different performance characteristics and calibra-

tions and 2) the fragmented sampling of the area stem-

ming from the spatial distribution of the observation

sites (Mapes et al. 2003). Moreover, there is a need to

understand latent heating on global scales that cannot

be addressed using regional field campaigns. The launch

of the Tropical Rainfall Measuring Mission (TRMM)

paved the way for the development of satellite-based

methods for inferring latent heat release throughout the

tropics and subtropics from both active and passive

sensors. A thorough review of many of the TRMM-

based latent heating products can be found in Tao et al.

(2016). The Goddard convective–stratiform heating

product (Tao et al. 2010), for example, employs a

lookup table generated mainly from tropical oceanic

cloud-resolving model (CRM) simulations to retrieve

latent heating using rain rate—a proxy for cloud depth—

and cloud type. The hydrometeor heating product (Yang

and Smith 1999), on the other hand, uses features of

vertical velocity, rain rate, and the hydrometeor profile

as input into a CRM to calculate latent heating. Yet

another approach is the trained radiometer (TRAIN)

algorithm (Olson et al. 1999), which utilizes a trained

database of reflectivity and brightness temperature

composites to estimate latent heating from passive

microwave observations.

Of greatest similarity to the work presented here is

the spectral latent heating (SLH) algorithm (Shige

et al. 2004, 2007, 2008, 2009). SLH uses characteristics

of a reflectivity profile, including the rain-top height

and a cloud type classification, to retrieve latent heat-

ing from a model-generated lookup table. This meth-

odology is effective because the vertical reflectivity

structure correlates well with vertical variations in the

drop size distribution although it is skewed to the

largest drops in the size spectrum and hence does not

accurately represent changes to the smaller drops.

These variations represent the fingerprint of the liquid

and ice processes occurring within the cloud, thus al-

lowing the corresponding heating to be estimated with

reasonable skill (Hagos et al. 2010). Isolated warm rain,

however, poses a challenge for all TRMMprecipitation

radar (PR) algorithms due to the PR’s high minimum
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detectable reflectivity (118dBZ) and 4-km field of view

(Kummerow et al. 1998; Berg et al. 2010).

It is reasonable to expect that a similar approach can

be applied to any radar, including the CloudSat Cloud

Profiling Radar (CPR), which has excellent sensitivity to

lighter precipitation. CloudSat is an Earth observation

satellite flying in the Afternoon constellation (A-Train)

(Stephens et al. 2008; L’Ecuyer and Jiang 2010). A-Train

satellites follow a sun-synchronous orbit that crosses the

equator at around 1330 local time at an altitude of 690km.

The CPR is a W-band (94GHz) nadir-viewing radar

with a vertical resolution of 480m (with backscatter

oversampling increasing this to 240m), a cross-track

resolution of 1.4 km, and an instantaneous along-track

resolution of about 1.75km (Stephens et al. 2008; Tanelli

et al. 2008). The minimum detectable reflectivity of the

CPR is 230 dBZ, providing the sensitivity needed to

observe lightly precipitating clouds that extend above

the region obscured by ground clutter in the lowest

750m of the atmosphere (Haynes et al. 2009).

Because of its high sensitivity, high spatial resolution,

and collocation with other satellites in the A-Train,

CloudSat’s CPR provides a unique perspective for in-

ferring latent heating in shallow, lightly precipitating

clouds. CPR observations are currently used in three

precipitation algorithms that generate estimates of liquid

and frozen precipitation over most of the globe (Haynes

et al. 2009; Lebsock and L’Ecuyer 2011; Wood et al.

2014). These efforts have provided improved estimates of

shallow rainfall in the tropics and overall precipitation in

the extratropics, particularly in areas where a significant

fraction of precipitation falls as snow (Rapp et al. 2013;

Wood et al. 2014). The algorithms generally underestimate

heavier precipitation due to the strong attenuation of

the W band.

The main objective of this study is to test the hy-

pothesis that downward-viewing W-band radar obser-

vations can constrain the magnitude of latent heating

and other related cloud properties in lightly precipitating

warm rain clouds. Though warm rain systems have been

calculated to contribute up to 20% of global rainfall (Lin

and Rossow 1997; Liu and Zipser 2009), the observation

of these shallow systems is often underestimated (Berg

et al. 2010). Successfully quantifying latent heat release

in these warm rain clouds would help to complete the

spectrum of latent heating estimates globally. We at-

tempt this quantification through the design and im-

plementation of a Bayesian Monte Carlo algorithm

described in section 2. Results from testing the algorithm

in a synthetic environment are presented in section 3,

while examples of application to airborne data collected

during a recent field campaign and a CloudSat granule

are presented in section 4. The overall performance of

the algorithm is summarized, with a discussion of forth-

coming research and potential avenues of algorithm

advancement, in section 5.

2. Algorithm design

a. Bayesian framework

Inferring latent heating from vertical profiles of

reflectivity is not trivial because the reflectivities are

only indirectly related to the associated microphysical

processes through the resultant radar signatures. The

observations must be connected to the physical pro-

cesses through dynamical models. Bayesian Monte

Carlo (BMC) methodologies are well suited for this

inverse problem because they connect a generated a

priori distribution of possible physical states to the

observations in a probabilistic way. BMC retrievals

have frequently been used in the remote sensing of cloud

microphysical properties. Kummerow and Giglio (1994),

for example, created a rainfall retrieval by employing a

Bayesian estimate of the relationship between brightness

temperatures and rainfall rate. Evans et al. (1995) directly

applied the BMC method to retrieve vertical hydrome-

teor profiles from combined passive instrument channel

observations.

One advantage of a BMC retrieval is that it provides

the infrastructure to combinemeasurements of different

types, potentially from different instruments. Further,

this method provides not only a mean state but also the

uncertainty based on the spread of the a posteriori dis-

tribution, which explicitly accounts for the relative ac-

curacies associated with all observations through the

assumed error covariance matrix. Larger variances will

yield a more relaxed distribution, while smaller vari-

ances will narrow the solution set. Yet another advan-

tage of the BMC approach is that no single assumption

regarding physical characteristics of the state are

required, such as a predefined cloud droplet number

concentration. Instead, models or in situ observations

that link such parameters to thermodynamic and dy-

namic conditions can be incorporated into the database

simulations.

In general, a BMC retrieval takes an a priori distri-

bution and updates it to an a posteriori distribution by

reducing the possible solution set to include only those

states that provide a close match to the observations.

Mathematically, the vector of retrieved quantities is

generated by comparing the vector of simulated ob-

servations ys for all profiles in the algorithm database to

the vector of observations yo and assigning a proba-

bility p to each member i while accounting for the co-

variance C between the vector components:
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where N is the number of database members. Following

Bayes’s theorem, the retrieved vector is the sum of the

database profiles’ quantities weighted by their associ-

ated probability:
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For further discussion of this approach, see L’Ecuyer

and Stephens (2002).

The key to producing quality retrievals with a BMC

approach comes down to two factors: 1) generating

a database of physically realistic realizations and

2) specifying an appropriate error covariance matrix that

represents the relative accuracy of all component mea-

surements and the correlations between them. In prac-

tice, these factors require several assumptions and choices

regarding the source of information to include in the

database and its completeness, and the current study is no

exception. Since observational estimates of latent heat

release in warm rain systems are very limited, a database

of cloud-resolving model simulations is adopted here to

illustrate the potential for retrieving latent heating in

warm rain from W-band radar observations (described

below), and an appropriate error covariance matrix is

assembled as follows.

Variances s form the diagonal element of the co-

variancematrix through assumed errors in the algorithm

database and input. Off-diagonal elements of the co-

variance matrix represent correlations r between the

errors in various parameters owing to effects like at-

tenuation or sensitivities to forward model assumptions.

The full covariances that fill in the off-diagonal elements

of the covariance matrix are the product of the corre-

lation and the assumed errors of each variable:
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b. Cloud-resolving model simulations

To supply an a priori database spanning the space of

realistic warm rain states, the Regional Atmospheric

Modeling System (RAMS) is employed. RAMS is a

versatile, high-resolution, nonhydrostatic CRMwith a

bin-emulating two-moment bulk microphysics scheme

(Cotton et al. 2003; Saleeby and Cotton 2004; Saleeby

and van den Heever 2013). Size distributions of all

hydrometeors in RAMS are defined by a modified

gamma distribution, while mass–volume and terminal

velocity relationships follow power laws. Mixing ratio

and number concentration of cloud droplets, drizzle,

and rain are used in this paper given the focus on warm

rain processes.

Nine separate RAMS simulations are used to build

the database employed here. Each simulation is initial-

ized from composite soundings of the Atlantic Trade

Wind Experiment (ATEX) over a domain in the tropi-

cal Atlantic Ocean bounded from 14.498 to 15.398N and

from 35.538 to 36.468W with cyclical lateral boundary

conditions (Saleeby et al. 2015). The model resolution is

set to 250m in the horizontal and 100m in the vertical.

Each horizontal dimension consists of 400 grid boxes,

resulting in a 100 km by 100 km domain. A total of 40

equally spaced vertical layers are specified from the sea

surface to a 4-km top with a 400-m-thick Rayleigh

damping layer at the domain top. No large-scale forc-

ing is imposed within the model in order to allow a

variety of warm cloud types to form within the domain.

Surface processes are parameterized using the ‘‘ocean’’

category from the Land Ecosystem–Atmosphere Feed-

back, version 3 (LEAF-3), surface model (Walko et al.

2000). The model is spun up for 12 h and then run for

24 additional hours with output variables computed

every 5min. The analysis presented here will utilize

data from the entire 24-h period.

Each simulation has a distinct combination of sea

surface temperature (SST) and maximum concentra-

tion of aerosols that can serve as cloud condensation

nuclei (CCN) to capture a range of warm rain regimes

that occur in distinct environments. SST is defined to

be either 293, 298, or 303K, while CCN concentra-

tions of either 100, 400, or 800 per cubic centimeter

(cc21) at the surface are chosen. Each model run is

initialized with an idealized aerosol profile where the

surface aerosol number concentration decreased lin-

early with height to the model top. Large regime dif-

ferences result because of the varied environmental

conditions between runs (Saleeby et al. 2015). At 293K,

the cloud cover is highly homogeneous in extent. For

higher SSTs, much of the domain is cloud free as pre-

cipitation is confined to isolated convective cores. Some
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modulation of precipitation intensity in response to change

in aerosol concentration is present, most notably in the

middle SST experiments, where lower aerosol environ-

ments are more homogeneous in precipitating cloud

cover, while higher aerosol environments yield some

convective cores.

c. Radar simulator

To translate RAMS hydrometeor species and atmo-

spheric state output into a set of observables that might

be seen by a radar surveying the real atmosphere, a radar

simulator is applied to the model output. QuickBeam is

a radar forward model that computes radar reflectivity

and attenuation at a specified frequency given a model

hydrometeor profile (Haynes et al. 2007). Theunattenuated

reflectivities are also calculated to estimate the path-

integrated attenuation (PIA) resulting from hydrome-

teors. Microphysical distributions used in the radar

simulator are chosen to match the RAMS two-moment

microphysics scheme. For the purpose of retrieving latent

heating from shallow clouds, W-band reflectivities con-

sistent with CPR are simulated by QuickBeam. Scat-

tering properties are defined using Mie theory, and no

melting-layer model or complex scattering tables are

necessary given the absence of ice-phase processes in

these simulations.

d. Database properties

To populate the database with a set of realistic

profiles, every eighth output time (or every 40min) is

sampled. This process yields a pool of profiles that are

independent of each other while limiting the number

included. Only profiles with a surface rainfall rate

greater than or equal to 0.01mmh–1 and at least one

reflectivity bin exceeding 0 dBZ are processed, as the

latter is the threshold used to define rain-certain

profiles in the CloudSat 2C-PRECIP-COLUMN al-

gorithm (Haynes et al. 2009). This procedure yields

nearly 1.4 million valid realizations of warm rain

from which the algorithm may search for a solution.

In addition to defining a measurement vector con-

sisting of the full profile of reflectivity with PIA, seven

different reflectivity profile parameters are defined in

order to assess the potential for reducing computa-

tional cost by using a smaller observation vector in the

algorithm. These parameters are listed in Table 1 and

illustrated in Fig. 1. Starting from the top of the cloud,

the height of the highest 230-dBZ echo, H230, is de-

fined to represent the cloud-top level. Next, from the

top down, the height of the 0-dBZ intersection H0 is

chosen to indicate the top of the rain column. The

maximum reflectivity detected in the profile ZM

provides a measure of the largest drops in the profile,

while the height of ZM, HM, provides information

about the vertical distribution of condensate. Path-

integrated reflectivity (PIR) serves as a measure of the

integrated condensate drop spectrum within the cloud.

The near-surface reflectivity Z1km is defined as the re-

flectivity value closest to 1 km above ground and helps

to discern the near-surface properties of the profile

whenever a profile is not fully attenuated. The term

Z1km is also a bin height at which ground backscatter

contamination is minimal on the CPR. Finally, the two-

way PIA provides information about the integrated

water mass within the cloud. Model values of LWP,

surface rainfall rate, and the vertical profile of latent

heating associated with each profile form the algorithm

outputs.

Assigned variances for the reflectivity parameters are

consistent with the error characteristics of the CloudSat

CPR (Tanelli et al. 2008). Reflectivity and PIR are as-

sumed to have errors of 1 dBZ to match the signal-to-

noise ratio of the CPR. Uncertainties due to forward

model error owing to assumed drop size distributions

are not included in this initial formulation, but they will

be discussed later. Height errors are assumed to match

approximately one vertical range bin of the radar (100m

for applications at native model resolution and 300m

when applied to CloudSat data). Estimates of PIA from

the CPR are a function of the attenuated surface back-

scatter and the integrated extinction coefficient, having

an estimated uncertainty of about 2dB over the ocean

(Haynes et al. 2009). Note that while a constant 2-dB

error is assumed in the algorithm, the actual uncertainty

in CloudSat PIA is a function of surface wind speed.

The correlations between variables are either 1) the

computed linear Pearson correlation coefficients when

integrated and height variables are used or 2) an expo-

nential decay when full reflectivity profiles are used.

Figure 2 displays two-dimensional histograms of several

different characteristics of reflectivity profiles, as well as

the associated inferred correlation matrices for all var-

iable combinations and the full reflectivity profile. Dis-

tributions between the different parameters exhibit no

clear linear relationship with the exception of PIR and

TABLE 1. Description of the tested algorithm variables.

Variable Description

H230 230-dBZ height intersection starting from the top

H0 0-dBZ height intersection starting from the top

PIR Path-integrated reflectivity

PIA Two-way path-integrated attenuation

ZM Profile maximum reflectivity value

HM Height of the profile maximum reflectivity value

Z1km Nearest to 1-km AGL reflectivity value
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ZM. This is reflected in the fact that the correlation be-

tween PIR and ZM (fourth row from the top, third col-

umn from the left) is the only quantity that approaches

unity (0.975). Full reflectivity profile correlations ri are

assumed to decay exponentially as a function of height zi
above or below a given level z by a defined scale length
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This function is chosen to mathematically represent the

correlations between errors in nearby reflectivity layers.

Because the aim of this study is to demonstrate ap-

plication of the algorithm to CloudSat, two databases

are created: one at the full model resolution that is used

to test the algorithm and may be suitable for application

to high-resolution airborne radar, and the other appro-

priate for application toCloudSatwheremodel output is

degraded to the resolution of the CloudSat footprint by

averaging horizontally to construct a 1.5-km-diameter cir-

cular footprint and vertically to form 300-m-height bins.

e. Evaluation metrics

In addition to standard error statistics, other metrics

can be used to assess the effectiveness of the algorithm.

First, the maximum probability (hereafter referring

to the maximum probability prior to normalization) is

employed as a quality control check for the algorithm

since this value is analogous to chi-squared through

pi 5 exp(21/2x2). Maximum probability and chi-squared

exhibit opposite responses: very low maximum prob-

abilities correspond to high values of chi-squared and

describe a bad fit when the algorithm cannot find a

close match to the observations anywhere in the data-

base, while maximum probabilities near unity describe a

good match in the database.

Second, entropy provides a useful measure of overall

information content. Entropy is often associated with

heat changes vis-à-vis thermodynamics, but it can also be

applied to measure changes in information afforded by

an observing system. The relative entropy, or Kullback–

Leibler (KL) divergence, is defined1 for discrete distri-

butions as

D
KL

5 �
N

i51

p
i
log

2

�
p
i

q
i

�
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where pi and qi are the respective probabilities of a profile

from different distributions (Kullback and Leibler 1951).

In problems associated with non-Gaussian statistics,

relative entropy is preferable over other information

content metrics (e.g., the Shannon information con-

tent; Shannon 1948) as it provides a quantification of

the distance between statistical populations, as op-

posed to simply measuring the change in width of two

distributions (G. W. Petty 2016, personal communi-

cation). Relative entropy helps to quantify the change

between the a priori and a posteriori distributions;

higher values indicate better coverage of the input

within the database and therefore a higher information

content afforded by the retrieval. Relative entropy will

be computed for various algorithm configurations

FIG. 1. Illustration of the tested algorithm parameters listed in

Table 1 on a reflectivity profile (green): H–30 (red), H0 (orange),

HM and ZM (blue), Z1km (light green), PIR, and PIA.

1 Kullback and Leibler (1951) do not specify a logarithm base,

but base 2 is adopted by convention to define information in units

of a bit.
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relative to retrievals using only the 0-dBZ height. This

parameter is chosen as a reference since all profiles in

the database contain at least one bin with a reflectivity

greater than or equal to 0 dBZ to ensure the presence

of rain.

3. Model-based algorithm tests

To examine the behavior of the algorithm, a series

of synthetic retrievals are conducted with cross sec-

tions and domains from model time steps that were

not included in the retrieval database. Utilizing these

excluded profiles provides test samples that are in-

dependent of the profiles included in the database.

Initially, the full reflectivity profile at the model res-

olution is employed to provide a reference against

which the performance of various parameter subsets

at both model and CloudSat resolutions will be com-

pared. Selected cross sections are examined qualita-

tively, while full domains are aggregated for statistical

assessments of algorithm performance. The evaluation

metrics described in section 2e are used throughout this

process to guide the assessment.

a. Full-resolution retrievals

A sample retrieval for a cross section from the sim-

ulation with a 298-K SST and a maximum CCN of

400 cc21 is shown in Fig. 3. In this scene, three pre-

cipitating cumulus clouds are present with the largest

centered about 5 km from the western edge of the

domain. The average latent heating profile shows cooling

at cloud top [;2.2km above ground level (AGL)] from

entrainment and an area of heating through the middle

extent of the cloud (2 km down to 800m AGL) from

condensational growth. Very slight cooling is occur-

ring below the cloud base down to the surface owing

to evaporative cooling in precipitation.

The full reflectivity profile is used to generate the es-

timates shown in Fig. 3. While the overall magnitudes of

the retrieved quantities are generally consistent with the

model truth, both the retrieved vertical profiles of latent

heating (Fig. 3d) and column total latent heating and

cooling (Fig. 3g) at the high native resolution of the

RAMS simulations exhibit considerable noise across the

domain. Retrieved LWP (Fig. 3f) is smoother and gen-

erally follows the trend of the model quantity. Surface

rainfall rate (Fig. 3j) is also noisy and contains a peak of

unrealistically high rainfall rate at 5 km, where the rate is

almost 50% larger than the model value and then de-

creases to a much lower value. Latent heating estimates

are also mismatched over 0–8km from the left side,

likely due to the close proximity of two cells combined

with full attenuation of the reflectivity profile. While the

mean statistics of the cross section are captured, this

erratic behavior suggests that random errors are preva-

lent from profile to profile. Despite a high entropy

(Fig. 3i), maximum probabilities (Fig. 3h) are near zero,

meaning the retrieval does not fit the data very well.

The noisiness and poor fit of these full profile re-

trievals can be understood as follows: simulations used

FIG. 2. (left) Two-dimensional histograms between different simulated reflectivity profile characteristics. (right)

Correlation coefficients used in computing the covariancematrices of reflectivity parameters and for full reflectivity

profile with an example functional decay with a scale length of 2 (see text).
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in the database provide discrete possible states of the

atmosphere, not a continuous distribution fitted to ob-

servations or a theory that provides a relationship be-

tween two values. For the BMC retrieval to most

effectively function, it requires a database that spans the

complete state space for each dimension of observation.

By constraining a database of discrete reflectivity pro-

files with accurate observations containing the same

number of observational dimensions, areas of the dis-

tribution that do not fully span a given dimension will

cause suboptimal behavior. The algorithm may isolate a

profile at an extreme when it searches near the tail of

the distribution. Because of this, the probability and

spread are low and the retrieval devolves into a nearest-

neighbor search. Furthermore, the low uncertainties that

are retrieved are misleading. They do not indicate high

confidence from the algorithm in the retrieval, but

rather a lack of a sufficient number of close matches.

To smooth the discrete nature of the database, the

spread of influence of each database member can be

FIG. 3. Model resolution retrievals using the full reflectivity structure and PIA as the input, with error charac-

teristics of Ls 5 2, sref 51 dBZ, and satt52 dB. (a) Spatial distribution of latent heating from RAMS. (b) RAMS

model average latent heating profile. (c) Input reflectivity shaded with PIA plotted in black. (d) Retrieved spatial

distribution of latent heating. (e) Retrieved average latent heating profile with uncertainty shaded in yellow.

(f) RAMSmodel (dashed black) and retrieved (solid red) LWP. (g) RAMSmodel and retrieved column total latent

heating and latent cooling. (h) Distribution of maximum probability from each profile. (i) Relative entropy dis-

tribution from each profile. ( j) RAMS model and retrieved surface rainfall rate. In (f), (g), and ( j), the cross-

sectional RAMS model and retrieval means are plotted as correspondingly styled horizontal lines [with ( j) the

combined heating and cooling]. In (h) and (i), the distribution mean (blue) and median (red) are plotted as

vertical lines.
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increased by covariance matrix inflation. This can be

accomplished by increasing either the assumed errors of

an observation (sy) or the associated covariances be-

tween observations (rij). Assumed error increases can be

attributed to accounting for other uncertainties in the

real world. In the case of reflectivities, an example is

the drop size distribution assumptions. The assumed

error of the reflectivity bins is increased from 1 to

3 dBZ in Fig. 4a to investigate the effects of covariance

inflation. Expanding the error allows more solutions

to be considered and smooths some of the variations

across the cross section. In Fig. 4b, the impacts of in-

creasing the scale length of the reflectivity correlations

from 2 to 6 are shown. This reduces the effective di-

mensionality of the profile by introducing stronger

correlation relationships between a given reflectivity

bin and its vertical neighbors. The distribution of re-

trieved latent heating is similar to that at the original

scale length.

Using only covariance matrix inflation to relax the

database for the maximum number of observables still

results in a noisy retrieval that has a high spread of

retrieval error and low algorithm confidence. This

somewhat counterintuitive result suggests there may

be value in using a smaller number of inputs for the

algorithm, whose dimensionality is well captured by

the database, to relax the discontinuous nature of

the database. In other words, more observations do

not necessarily result in a better retrieval, and in-

creasing the degrees of freedom in the retrieval helps

to smooth the state space of the database. The issue

of overconstraining and a desire to reduce computation

cost for a global retrieval both motivate exploring al-

ternatives to using the full reflectivity profile. Impor-

tant characteristics of the reflectivity profile, like those

adopted in the SLH algorithm, are used in an attempt

to collapse the profile into fewer observations while

still capturing the signatures of the physical processes

occurring.

b. Representativeness of the parameters

First, to demonstrate the effects of different classes of

profile characteristics on the retrieval and to qualify the

choice of a mix of profile parameters, the seven input

parameters described in section 2d are grouped into two

categories. Parameters PIR, PIA, ZM, and Z1km con-

strain cloud intensity and the amount of water within the

column. Parameters H230, H0, and HM provide in-

formation about the structure of cloud and rain verti-

cally. Figure 5 shows retrievals on the same cross section

in Fig. 3, but for these subsets of parameters. At first

glance, when using only the intensity parameters

(Fig. 5i), the retrieved latent heating profiles are poorly

constrained vertically. The tops of the clouds are ill

defined and are situated at either 1 or 3 km, with higher

tops in the greater rain-rate sections. All uncertainties

are large except for those on LWP, but biases in column

total latent heating, LWP, and rain rate are low. This

demonstrates that integrated properties can constrain

some of the bulk quantities even though the vertical

distributions are misplaced.

When only the height values are used as algorithm

input [Fig. 5(ii)], the vertical structure of the latent

heating is retrieved with cloud tops and bases in rea-

sonable agreement with model truth. Heating generally

occurs in areas with reflectivity greater than 0dBZ, and

cooling occupies the area between the 230- and 0-dBZ

heights. The average latent heating profile is better con-

strained with no heating or cooling above 3km and a

more marked vertical transition from overall heating to

cooling. Column total latent heating, LWP, and rain rate

are all, however, still significantly underestimated. Thus,

the height parameters provide information on the vertical

FIG. 4. Comparison of retrieved spatial latent heating distribu-

tions using the full reflectivity structure and PIA as the input with

error characteristics of (a) Ls 5 2, sref 5 3 dBZ, satt 5 2 dB; and

(b) Ls 5 6, sref 5 1 dBZ, satt 5 2 dB.
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distribution of heating but not the proper magnitude or

intensity of any quantity.

c. Conditioning the retrieval

The preceding analysis demonstrates the synergy of

including some height and some bulk intensity measures

in the retrieval. To determine an optimal set of obser-

vations for the retrieval, combinations of parameters are

analyzed in the context of information content metrics

described in section 2e. The goal is to determine the

minimum set of parameters that provides a high

algorithm certainty while avoiding the stability issues

described previously. Distributions of maximum proba-

bility and relative entropy are calculated for the retrieval

over a full model domain not included in the database

from the 298-K SST, 800 cc21 CCN simulation. The al-

gorithm is run with all possible combinations of param-

eters, and a sample of combinations with respective

FIG. 5. Comparison of retrieved values using (i) the intensity category of parameters only with error charac-

teristics of sref 5 1 dBZ, satt 5 2 dB; and (ii) the height category of parameters only with error characteristics of

shgt 5 100 m. (a)–(g) The same variables as in Figs. 3d–j.
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maximum probability and relative entropy distributions

is shown in Fig. 6. Recall that higher values of relative

entropy for a given set of parameters indicate a greater

increase in information relative to an algorithm that uses

only the 0-dBZ height.

Adding only one or two variables toH0 (top of Fig. 6)

provides only modest increases in information content,

while adding parameters related to intensity tends to

provide more information. In cases where only a few

parameters are included in the retrieval, the maximum

probability distribution demonstrates that the database

is able to fit the observations very well. By supplying

just a few parameters as an input, the state space of these

parameters is well sampled. The overall trend of the

relative entropy shows that including up to six parame-

ters increases the entropy gained while also retaining a

good fit with maximum probabilities averaging near

0.75. When using all seven parameters examined (bot-

tom of Fig. 6), mean maximum probabilities drop to 0.5

with only a minor increase in information when com-

pared to six parameters. This is likely due to correlations

between parameters that result in little information gain

but lead to initial evidence that the database may un-

dersample the measurement space of all seven param-

eters combined. Six parameters are, therefore, selected

as optimal for this algorithm: H230, H0, HM, PIR, PIA,

and Z1km.

Figure 7 shows an application of the algorithm with

these six chosen parameters to the cross section exam-

ined in Fig. 3. Heating within the largest cell is retrieved

with cooling at the top of the cloud. The secondary cell

to the left is also captured by the algorithm, with a

slightly shallower layer of heating and associated cooling

above the cloud. Cooling consistent with evaporation

also appears below the cloud base, with stronger cooling

corresponding to the more intense part of the largest

cell. Finally, the dissipating cell on the right edge of the

cross section exhibits shallow heating centered vertically

around 1.5 km and cooling near the top of the cloud. The

average latent heating profile captures heating through

the middle extent of the cloud and the peak near 1.8 km.

Cooling above about 2km corresponds to the entrain-

ment cooling that occurs at the same level in the model

truth. The retrieved average profile is slightly more

peaked than the truth, but the uncertainty in the profile

captures the truth values.

There is excellent agreement between the model

and the retrieved LWP (Fig. 7f), with the model

mean slightly underestimated by the retrieval. Col-

umn total latent heating (Fig. 7g) reproduces the

broad features of the cross section well and profile-

to-profile noise has been reduced compared to the

full profile retrieval (Fig. 3). Strong heating from the

largest cell is captured as is the weaker heating between

the two clusters of cells horizontally at 10–13 km from

the left. Retrieved cooling is not as strong in the far

right cell or between the two left cells, but that is

compensated for by some underestimation of heating

and cooling in other areas, resulting in very little bias

in the domain-averaged column total latent heating

retrievals. Finally, the broad features of the surface

rainfall rate (Fig. 7j) are captured with both regions

of more intense rainfall and very light rain near the

dissipating cell.

d. Impact of spatial resolution

The ultimate goal of this work is to develop an ap-

proach that can be applied toCloudSat observations that

have reduced resolution compared to the native model

resolution considered thus far. To explore the impact of

coarser spatial resolution, the CRM database is de-

graded to the 1.5-km spatial and 300-m vertical resolu-

tions appropriate for the CloudSat CPR. Data in the

lowest three bins (up to 700m) are removed to simulate

the effects of ground clutter in CloudSat observations.

Figure 8 shows that the two leftmost cells merge into one

large area of heating and that the dissipating cell at

13–17 km from the left edge is reduced to an area of

primarily upper-level cooling as a result of this res-

olution degradation. The average RAMS profile is

slightly smoother than in Fig. 7 with peak cooling due

to cloud-top entrainment near 2.3 km AGL, heating

through much of the 2–1-km AGL layer, and slight

evaporative cooling below the cloud base. Magni-

tudes in the average latent heating profile are very

similar to those of Fig. 7 with close to 10 K h21 in the

heating core.

The retrieved and average profiles of latent heating in

Figs. 8d,e agree fairly well with the modeled latent

heating as peaks in the average vertical profile match

those of the truth, with the uncertainty in the profile

again capturing the model profile. The retrieved LWP

(Fig. 8f) nearly matches the model truth, similar to the

performance of the algorithm at full model resolution.

Column total latent heating (Fig. 8g) is biased slightly

higher, but the spatial distribution is well captured.

While the rain-rate structure is captured, the average

across the cross section is biased low. Compared to the

nativemodel resolution results, the degraded reflectivity

structure misses many of the previous features due to

both spatial averaging and the simulated ground con-

tamination. Thus, as one would expect, decreased res-

olution blurs many of the finer-scale features, but these

results suggest that degrading the resolution does not

substantially decrease algorithm performance and that

the algorithm input parameters provide sufficient
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FIG. 6. Relative entropy and maximum unnormalized probability distributions on a full

output domain for multiple algorithm parameter combinations relative to the 0-dBZ

height retrieval. The blue diamond indicates the distribution mean, and the red line in-

dicates the distributionmedian. The left (right) box edge is the 25th (75th) percentile, with

the box width defined as the interquartile range (IQR). The left (right) whisker is the

25%2 IQR (75%1 IQR) value.
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information to perform physically reasonable latent

heating retrievals.

e. Retrieval performance

To provide a more statistical assessment of retrieval

performance, retrieved LWP, surface rainfall rate, and

total column latent heating and cooling from a full 298-K

SST, 800 cc21 CCN simulation time step at both the

model and CloudSat resolutions are compared against

themodel truth in Fig. 9. For themodel resolution, LWP

is retrieved very well, with the scatterplot following a 1:1

ratio between modeled and retrieved values. The do-

main LWP bias is29.33 1025 kgm22 (20.02%) and the

root-mean-square error (RMSE) is 0.1 kgm22. Rainfall-

rate retrievals are biased 20.09mmh21 (28.7%) and

have an RMSE of 1.5mmh–1. At lower rainfall rates,

the retrieval approximately straddles a 1:1 ratio, while

higher rainfall rates are biased low, which is likely due

to attenuation. Latent heating and cooling tend to be

biased low, where latent heating has a negative bias

(225.14Kh21; 235.2%) and the latent cooling has a

positive bias (25.25Kh21; 54.6%). When these two com-

ponents are summed together, the bias in total latent heat

release across the domain is negligible. Biases in the

retrieved level of maximum latent heating and cool-

ing are within about one vertical level, indicating the

algorithm does an excellent job of characterizing the

vertical distribution of processes in the column.

Averaging the test output time from native resolu-

tion to contiguous CloudSat profiles provides only a

small number of samples—less than 3% of the model

resolution test. To achieve a reasonable sample size for

meaningful statistics, every single profile in this domain

is averaged with its respective neighboring profiles to

FIG. 7. As in Fig. 3, but using the algorithm reflectivity profile parameters as input—H230, H0, HM, PIR, PIA, and

Z1km—with errors of sref 5 1 dBZ, satt 5 2 dB, and shgt 5 100m.
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the CloudSat resolution. This process simulates a Monte

Carlo sampling of footprint configurations in the test

domain at CloudSat resolution while removing any sub-

jective choice as to which profiles serve as the footprint

centers. Moreover, to replicate the temporal implications

of integrating over an area, outputs from three consecu-

tive model time steps are averaged together to provide

time-mean values of the retrieved properties. Figure 10

shows the results from this test.

At the decreased resolution, LWP continues to be

well captured with a bias of 20.01 kgm22 (22.7%) and

an RMSE of 0.04 kgm–2. Rainfall-rate biases are re-

duced to 20.01mmh–1 (22.6%) and an RMSE of

0.6mmh–1. Latent heating and cooling are again bi-

ased as was the case at the model resolution; heating

has a 22.44 K h21 (223.5%) bias while cooling has a

3.03K h21 (51.6%) bias. Summing the total heating

and cooling yields a domain, time-averaged bias of

0.6Kh21. The heights of maximum heating and cooling

are captured extremely well with negligible biases of

0.3m (0.9%) and 24.3m (214.8%), respectively.

These statistics show that the algorithm can suc-

cessfully retrieve LWP, surface rainfall rate, and both

the bulk latent heating and the vertical structure for full

domains not included in the database. Algorithm per-

formance is reasonably consistent between the native

resolution of the model and the decreased CloudSat

resolutions.

4. Application to observations

To illustrate the potential value of the algorithm for

real-world applications, two classes of observations

are chosen that approximately match the two spatial

FIG. 8. As in Fig. 7, but using the algorithm reflectivity profile parameters at CloudSat resolution with errors of

sref 5 1 dBZ, satt 5 2 dB, and shgt 5 300 m.
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resolutions explored before. Aircraft radar observations

from the Variability of American Monsoon Systems

(VAMOS) Ocean–Cloud–Atmosphere–Land Study

(VOCALS) campaign resemble the model resolution

database, while application to CloudSat observations

demonstrates the results from application to coarser-

resolution measurements.

a. VOCALS

VOCALS was an international study to determine

the mechanisms and impact of aerosol indirect effects

in the southeastern Pacific Ocean and to improve at-

mospheric and coupled atmosphere–ocean models in

this area (Mechoso et al. 2014). Part of VOCALS was a

field campaign called theVOCALSRegional Experiment

(VOCALS-REx) that conducted intensive ship-based,

aerial, and land-based observations, including radar,

radiosonde, and aerosol measurements. One of the par-

ticipating aircraft was the NSF/NCAR C-130 equipped

with the Wyoming Cloud Radar, a 94-GHz (W band)

radar that operated at a resolution of approximately 3.5m

horizontally and 15m vertically, with a noise estimate of

3dBZ (Oolman and Leon 2009).

On 2 November 2008, the C-130 flew over a pocket

of open cellular convection, taking a cross section

highlighting shallow convection of varying intensity.

No attenuation information was available because of

the varied flight height, so the retrieval is performed

without PIA and with sref 5 3 dBZ due to the in-

creased instrument noise. Figure 11 displays the scene

and retrieval results. The algorithm shows three cores

of precipitation from 2–4, 8–10, and 13–15 km hori-

zontally. LWPs (Fig. 11f) for these regions are

;1 kgm22, with the highest LWPs corresponding to

the areas of maximum rainfall rate. Retrieved latent

heating profiles (Fig. 11d) show strong heating in the

levels of maximum reflectivity from precipitation

formation and cooling occurring in areas where water

drops are likely evaporating. The large uncertainties

in all retrieved quantities are likely due to the absence

of PIA.

This VOCALS retrieval example demonstrates that

the algorithm can be used to provide realistic latent

heating estimates from airborne cloud radar obser-

vations at a finer resolution than that available from

satellite-based radars. It also shows that the database

contains sufficient diversity to capture the variability

observed in this scene. This highlights the flexibility of

the algorithm, as the parameters chosen can be ob-

tained from any radar provided it exhibits sufficient

FIG. 9. LWP, surface rainfall rate, latent heating and cooling, and levels of maximum latent heating and cooling scatterplots between

RAMS and the retrieval on a full domain at model resolution. LWP, surface rainfall rate, latent heating, and latent cooling points are

shaded by PIA of the profile, while levels of maximum heating and cooling are shaded by the number of profiles within each plotted bin. A

line of equality is plotted in green for reference.
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sensitivity to derive the required230- and 0-dBZ heights.

Therefore, the algorithm is not platform specific.

b. CloudSat

Next, the retrieval is applied to a shallow tropical

raining scene observed by CloudSat in granule 3585,

which passed over the central Pacific Ocean on 30 De-

cember 2006. Reflectivities are taken directly from the

2B-GEOPROF product, while attenuation values are

chosen to be the two-way near-surface bin attenuation

estimates from 2C-PRECIP-COLUMN (CloudSatData

Processing Center 2007). The retrieval for a section of

this granule is shown in Fig. 12.

Through the extent of the swath, areas of strong

reflectivity and higher PIA coincide with high rainfall

rates and high LWPs. The spatial pattern of latent

heating is consistent with physical expectations: heating

is strongest in areas that feature taller reflectivity cores

that correspond to deeper rainfall-generating cells.

Cooling occurs at the cloud top indicative of entrain-

ment of drier air. Furthermore, relatively strong cooling

exists below the cloud base in areas where the highest

surface rainfall rates are retrieved, indicating that a

higher flux of rainwater provides more water to be

evaporated. Once again, latent heating cannot be di-

rectly evaluated, but in this case we can compare re-

trieved surface rainfall rates to the existing CloudSat

rainfall products. Doing so shows agreement through

most of the cross section, with some heavier rainfall

present in areas of deeper profiles and anunderestimation

in the 10–20-km range from the left side where little

heating is retrieved. As a whole, the algorithm retrieves

quantities that are consistent with otherCloudSat granule

products.

5. Conclusions and forthcoming work

There remains a gap in our understanding of the

global role of latent heating in warm rain systems partly

due to a lack of observations of light precipitation and

shallow clouds from conventional precipitation sen-

sors. The BMC algorithm presented here provides a

pathway to filling this need by relating characteristics

of radar reflectivity profiles to the associated micro-

physical processes and, in turn, resulting latent heating

structure, LWP, and surface rainfall rate in warm rain

scenes. Information about cloud vertical extent is

provided by H230, H0, and HM, while the bulk prop-

erties are constrained with PIR, PIA, and Z1km. By

using these characteristics instead of the full reflectivity

profile, computation time is reduced and problems as-

sociated with large dimensionality in the database

construction are mitigated. Furthermore, the BMC

approach is readily adaptable to different platforms

FIG. 10. As in Fig. 9, but for the CloudSat resolution algorithm database and time averaged over 15min.
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and provides a framework for including additional

measurements from other sources in the future.

At model resolution, domain-averaged biases are low

despite large RMSE, an indication that retrieval accu-

racy is dominated by random error. Upscaling the al-

gorithm to CloudSat resolution yields similar results in

retrieval performance. The algorithm was applied to

observations collected during VOCALS and by CloudSat,

yielding realistic structures of latent heating, LWP,

and surface rainfall rates. The diversity of observation

sources demonstrates that the algorithm is not tied to a

specific instrument or platform, but that it can be applied

to any observations from which the algorithm inputs can

be derived. Yet the ability of the algorithm to provide

distinguishing information for light precipitation is re-

liant on the resolution and scale of the observation. In

the analysis performed here, the most intense areas of

heating ranged from a horizontal scale of 2 to 10km, and

some of the highest reflectivities were only near 15 dBZ.

Future observing platforms seeking to estimate the

characteristics of warm rain should consider the scale

necessary to observe these features.

To expand the algorithm to other cloud morphologies

that include ice-phase processes, additional model sim-

ulations are required to supplement the algorithm data-

base. Furthermore, such an application to other cloud

types or instruments will require additional assessments

of the forwardmodel contributions to the error covariance

matrices chosen. This assessment can be accom-

plished by propagating uncertainties in all assump-

tions through the algorithm and quantifying the

resulting changes in retrieved latent heating profiles.

Retrieving other precipitation regimes may also

warrant a dynamic error covariance matrix that var-

ies depending on the location and environment of the

algorithm input.

FIG. 11. Model resolution retrieval of the test algorithm on a section of C-130 Wyoming Cloud Radar data from

theVOCALS campaign on 2Nov 2008. (a) Input reflectivity structure. The gap corresponds to a portion of the cross

section with no reflectivity exceeding 0 dBZ. (b) Map displaying location of section. (c) Reflectivity profile pa-

rameters calculated from input reflectivity. (d) Retrieved spatial distribution of latent heating, (e) average latent

heating profile, (f) LWP, and (g) column total latent heating and cooling. (h) Maximum probability and (i) relative

entropy distributions. ( j) Retrieved surface rainfall rate. (Data courtesy of Larry Oolman and David Leon, Uni-

versity of Wyoming.)
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FIG. 12. The first attempt at a warm rain latent heating retrieval from CloudSat observations. This scene is from granule

3585 observedon 30Dec 2006. (a)Reflectivity structure and two-wayPIA from2B-GEOPROFand2C-PRECIP-COLUMN

near-surface bin attenuation product, respectively. (b) Map displaying location and orientation of the section with the

length of the line exaggerated to show detail. (c) Retrieved spatial distribution of latent heating. (d) Retrieved average

latent heating profile. (e)Retrieved surface rainfall ratewith uncertainty shaded in yellow. 2C-RAIN-PROFILE (blue) and

2B-PRECIP-COLUMN (green) rainfall-rate products are included for comparison. Distributions of (f) maximum

probability and (g) relative entropy. (h) Retrieved LWP. (Data courtesy of the CloudSat Data Processing Center.)
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The BMC approach utilized in this paper offers a

method for processing the completeCloudSat archive to

create a new shallow latent heating product. This dataset

could provide new insights into the spatial and temporal

distributions of latent heating from warm rain systems

globally. Moreover, the potential to combineCloudSat’s

estimates of latent heating from light precipitation with

those in heavier precipitation from TRMM and the

Global Precipitation Measurement paves the way for a

more complete perspective of latent heating within the

tropical regions of the atmosphere. Finally, the porta-

bility of the algorithm provides the opportunity for it to

be used on future missions that can sense light pre-

cipitation, like the Earth Clouds, Aerosol and Radiation

Explorer (EarthCARE) satellite (Illingworth et al. 2015).
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